工程机械用液压马达介绍(一)
首页 » 液压行业知识 » 工程机械用液压马达介绍(一)

 

工程机械用液压马达,低速大扭矩液压马达,现在的很多工程机械都在用液压式的,所以用到液压马达的情况也很多,而液压马达的选择性也有很多。

液压马达的详细介绍

低速大扭矩液压马达而言,配流机构是决定其性能的关键部件之一,目前均采用径向轴配流机构或端面配流机构。这两种传统的配流机构,不仅机械结构复杂和加工成本高,而且效率低。此外,传统的配流机构功能单一,仅能实现配流功能。在需要调速的场合,另要增加额外的调速元件,比如电液伺服阀或者电液比例阀,因而增大了系统的复杂度和成本。

 

鉴于此种情况宁波泰勒姆斯液压提出了一种采用高速电磁开关阀组来实现数字式配流与调速的液压马达方案,以装有高速电磁开关阀组的阀块来取代轴配流机构或者端面配流机构,借助于计算机控制技术,这种配流与调速方式在克服传统机械式轴配流机构和端面配流机构结构复杂、加工难度大、存在机械磨损和效率低等缺点的同时,不仅能完成配流功能,还可以实现低速大扭矩液压马达的双向速度调节功能。为了区别起见,本公司将这种带有数字式配流与调速机构的液压马达称为新型液压马达。 围绕所提出的新型液压马达,我们在剖析传统液压马达端面配流机构的基础上分析了数字式配流与调速的机理;在分析液压马达本体柱塞运动学以及单个柱塞扭矩之后,建立了新型液压马达的静态与动态数学模型,并且开展了配流特性、静态与动态调速特性、低速特性的仿真与分析;此外,开发了新型液压马达样机及其计算机测控系统,重点进行了配流特性、调速特性和低速特性等实验研究。

所完成的具体研究工作有

1)研究了新型液压马达数字式配流与调速机理 对国产YLM型曲轴连杆径向柱塞式低速大扭矩液压马达的端面配流机构进行分解,剖析柱塞腔油孔与配流盘油槽之间的尺寸约束,从而得出了端面配流机构的配流规律。在此基础上,对比分析了两种新型液压马达的实施方案,指出了各自的优缺点以及目前采用的方案,并以该方案为例建立了液压马达逆时针方向旋转和顺时针方向旋转的配流状态表以及液压马达本体各个柱塞腔的工作区间表。基于PWM (Pulse Width Modulation)的概念,提出了数字式调速的实现方式,为新型液压马达模型的研究以及样机的开发打下基础。

 

2)建立了型液压马达的静态与动态数学模型 采用RBF(Radical Basis Function)人工神经网络对所使用的高速电磁开关阀进行了模型辨识,建立了以PWM控制信号频率、占空比为输入,高速电磁开关阀流量为输出的模型。结合液压马达本体柱塞腔的运动学与排量分析,得出了新型液压马达的静态数学模型。在液压马达各个柱塞腔受力分析的基础上,分角度区间研究了高压油从通过高速电磁开关阀到最终形成合扭矩推动液压马达曲轴旋转的动态过程,并使用Laplace极限定理法对模型中与液压马达相关的参数进行了辨识,最终建立了新型液压马达的动态数学模型,为新型液压马达特性的仿真与分析提供理论依据。

 

3)进行了新型液压马达配流特性及其影响因素的仿真分析 基于所建立的新型液压马达动态数学模型,以逆时针方向旋转为例,详细分析了新型液压马达配流特性的影响因素,主要包括柱塞腔初始控制体积,绝对值角度编码器以及高速电磁开关阀三个方面。柱塞腔初始控制体积主要影响配流过程中各个切换区间内转速波动的范围;绝对值角度编码器的分辨率对配流过程中角度切换点有着明显的影响;绝对值角度编码器初始安装角度的偏差主要影响了配流过程中的总驱动扭矩,从而带来新型液压马达带载能力的变化;在高速电磁开关阀方面,研究了不同开启与关闭延迟时间以及流量特性差异对配流特性的影响。最后对比了逆时针和顺时针配流过程,并分析了配流状态切换过程。配流特性的仿真分析结论为新型液压马达的样机设计提供了依据。

 


本文标题:工程机械用液压马达介绍(一)


分类:液压行业知识
标签: